高中数学说课稿集合9篇
作为一位兢兢业业的人民教师,时常需要用到说课稿,借助说课稿可以让教学工作更科学化。那么什么样的说课稿才是好的呢?下面是小编为大家整理的高中数学说课稿9篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学说课稿 篇1各位老师:
大家好!
我叫xxx,来自xx。我说课的题目是《用样本的数字特征估计总体的数字特征》,内容选自于高中教材新课程人教A版必修3第二章第二节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。
2教学的重点和难点
重点:⑴能利用频率颁布直方图估计总体的众数,中位数,平均数。
⑵体会样本数字特征具有随机性
难点:能应用相关知识解决简单的实际问题。
二、教学目标分析
1、知识与技能目标
(1)能利用频率颁布直方图估计总体的众数,中位数,平均数。
(2)能用样本的众数,中位数,平均数估计总体的众数,中位数,平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法。
2、过程与方法目标:
通过对本节课知识的学习,初步体会、领悟"用数据说话"的统计思想方法。
3、情感态度与价值观目标:
通过对有关数据的搜集、整理、分析、判断培养学生"实事求是"的科学态度和严谨的工作作风。
三、教学方法与手段分析
1、教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用"问答探究"式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。
2、教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。
四、教学过程分析
1、复习回顾,问题引入
「屏幕显示」
〈问题1〉在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了。于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征。
提出问题:什么是平均数,众数,中位数?
(教师提问,铺垫复习,学生思考、积极回答。根据学生回答,给出补充总结,借助用多媒体分别给出他们的定义)
「设计意图」使学生对本节课的学习做好知识准备。
(进一步提出实例、导入新课。)
「屏幕显示」
〈问题2〉选择薪水高的职业是人之常情,假如你大学毕业有两个工作相当的单位可供选择,现各从甲乙两单位分别随机抽取了50名员工的月工资资料如下(单位:元)
分组计算这两组50名员工的月工资平均数,众数,中位数并估计这两个公司员工的平均工资。你选择哪一个公司,并说明你的理由。
(学生分组分别求两组数据的平均工资。
学生:甲、乙平均工资分别为:甲:1320元,乙:1530元。
所以我选乙公司。
学生乙:甲、乙两公司的众数分别为甲:1200,乙:1000,所以我选择甲公司。
学生丙:我要根据我的能力选择。)
「设计意图」学生按"常理"做出选择,教师指出只凭平均工资做出判断的依据并不可靠,从而引导学生进一步深入问题。
2讲授新课,深入认识
⑴「屏幕显示」
例如,在上一节抽样调查的100位居民的月均用水量的数据中,我们画出了这组数据的频率分布直方图。现在,观察这组数据的频率分布直方图,能否得出这组数据的众数、中位数和平均数?
(把学生分成若干小组,分别计算平均数、中位数、众数,或估计平均数、中位数、众数。然后比较结果,会发现通过计算的结果和通过估计的结果出现了一定的误差。引导学生分析产生误差的原因。原因是由于样本数据的频率分布直方图把原始的一些数据给遗失了。让学生明白产生这样的误差对总体的估计没有大的影响,因为样本本身也有随机性。)
「设计意图」让学生懂得如何根据频率分布直方图估计样本的平均数、中位数和众数。使学生明白从直方图中估计样本的数字特征虽然会有一些误差,但直观、快速、可避免繁琐的计算和阅读数据的过程。
⑵〈提出问题〉根据样本的众数、中位数、平均数估计总体平均数的基本数据,并对上一节的'探究问题制定一个合理平价用水量的的标准。
(师生通过共同交流探讨得知仅以平均数或只使用中位数或众数制定出平价用水标准都是不合理的,必须综合考虑才能做出合理的选择)
「设计意图」使学生会依据众数、中位数、平均数对数据进行综合判断,并做出合理选择。也为接下来对他们优缺点的总结打下基础。
⑶总结出众数、中位数、平均数三种数字特征的优缺点。
(先由学生思考,然后再老师的引导下做出总结)
「设计意图」使学生能更准确更全面地依据样本的众数、中位数、平均数对数据进行综合判断,并做出合理选择,使实际问题得到正确的解决。
3、反思小结、培养能力
①学习利用频率直方图估计总体的众数、中位数和平均数的方法。
②介绍众数、中位数和平均数这三个特征数的优点和缺点。
③学习如何利用众数、中位数和平均数的特征去分析解决实际问题。
「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力
4、课后作业,自主学习
课本练习
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
5、板书设计
高中数学说课稿 篇2各位老师:
今天我说课的题目是《条件语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:
一 ……此处隐藏9047个字……经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。
2、教学重点
会求闭区间上连续开区间上可导的函数的最值。
3、教学难点
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的'困难,所以这节课的难点是理解确定函数最值的方法。
4、教学关键
本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。
【教学目标】
根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:
1、知识和技能目标
(1)理解函数的最值与极值的区别和联系。
(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。
2、过程和方法目标
(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。
(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。
(3)会求闭区间上连续,开区间内可导的函数的最大、最小值。
3、情感和价值目标
(1)认识事物之间的的区别和联系。
(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。
(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。
【教法选择】
根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。
本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。
【学法指导】
对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。
【教学过程】
本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织。
高中数学说课稿 篇9我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:
一、教材分析
教材的地位和作用
“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!
根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。
二、教学目标
根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:
知识目标:
1、了解曲线上的点与方程的'解之间的一一对应关系;
2、初步领会“曲线的方程”与“方程的曲线”的概念;
3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;
4、强化“形”与“数”一致并相互转化的思想方法。
能力目标:
1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;
2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;
3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。
情感目标:
1、通过概念的引入,让学生感受从特殊到一般的认知规律;
2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。
三、重难点突破
“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。
怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。
四、学情分析
此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。
文档为doc格式