高中数学学习方

时间:2025-09-16 01:18:23
高中数学学习方法精选15篇

高中数学学习方法精选15篇

在日常学习、工作或生活中,学习时刻伴随着我们每一个人,不过只有真正找对了学习方法,才能能事半功倍,还能培养学习的兴趣。什么样的学习方法才是真正有效的呢?以下是小编整理的高中数学学习方法,仅供参考,欢迎大家阅读。

高中数学学习方法1

一、“弃重求轻”,培养兴趣:女生数学能力的下降,环境因素及心理因素不容忽视。目前社会、家庭、学校对女生的期望值普遍过高。同时,女生性格较为温和、内向,心理承受能力相对较差,再加上数学学科的难度较大,导致了她们对数学学习兴趣的减退,并且数学能力下降。我已根据您的要求修改了原始内容,如上所示。

二、为了提升数学能力,预习课前至关重要。在教学过程中,我们要有针对性地引导女生进行预习,并可以制定预习提纲,重点指导抽象概念、逻辑推理、空间想象和数形结合等需要较高能力的'内容。通过预习,学生可以在听课时更好地理解和应用知识,有助于突破难点。认真预习还可以改变学生的心理状态,从被动学习转变为主动参与。此外,在教学中我们也要注重方法,避免“开门造车”,确保学生掌握正确的学习方法。

教师要指导女生“开门造车”,让她们暴露学习中的问题,有针对地指导听课,强化双基训练,对综合能力要求较高的问题,指导她们学会利用等价转换、类比、化归等数学思想,将问题转化为若干基础问题,还可以组织她们学习他人成功的经验,改进学习方法,逐步提高能力、

四、“发现优点,增加自信”:在教学中应注重发掘女生的擅长之处,提升她们的自信心,使她们具备面对挫折的勇气和战胜困难的决心。同时,特别关注女生的薄弱环节,多讲解通用解法和常用技巧,并加强速度训练,既要从结果找原因,也要从结果推导原因,通过揭示解题过程来激发思维能力。此外,注重数学与几何的结合,适当增加直观教学,培养作图能力和想象力;还要揭示实际问题的空间形式和数量关系,培养建模能力。

高中数学学习方法2

一、夯实基础。

数学的基础就像建筑打地基,是一件看似不起眼但是十分重要的事情。夯实基础有以下几点需要注意:

1、基础的概念和公式要弄懂。

高中数学的基础概念和公式大概有十几个专题,各个专题的概念和公式首先要理解、其次是弄懂、然后是练熟。

2、纸上得来终觉浅,一定要注重练习。

数学看再多的公式,也还有注重平时的练习。

书后习题:书后习题时候课后及时做,因为习题比较简单,离考试所需要的难度还有很长一段距离。

二、不要抄作业。

很多同学竟然天真的以为,抄作业是一件省时省力的事。但其实抄作业时一件害人害己的行为!还有的学生觉得简单题自己已经完完全全会了,再写作业就是在浪费时间。但一抄了事,其实你错了,不管简单题还是难题你都应该去做。

简单题是在锻练你的计算能力,让你能够更快的反应出来,节省做题的时间。难题则是锻练你的逻辑思维能力,就算最后你可能做不完整,但你的逻辑思考能力也在一定程度上得到了锻炼,比直接抄答案要好的多。

三、勤于思考和提问。

当老师讲课的时候,最喜欢问学生的就是“这块有没有听明白?”“这块有没有听懂?不会的下课问我!”作为老师,学生的及时反馈是十分重要的!多和数学老师沟通,不懂的多问,他是你的老师,你再怎么差,他都不会拒绝一个找他问问题的学生。

志愿填报的基本模式是什么

专业(类)+院校

采取一所院校一个招生专业(类)为一个志愿,实行平行志愿投档的'统一录取模式。

模式特点:专业平行志愿是同一类别、同一段次中若干具有相对平行关系的专业(类)志愿,以一所院校的一个专业(类)为志愿单位,按照“分数优先、遵循志愿”进行投档。

填报须知:直接投档到某院校某专业(类),不存在专业服从调剂,不用担心被调剂到不喜欢的专业。考生既可选择不同高校的同一专业,也可选择同一高校的不同专业,还可以选择不同专业下的不同高校。

院校+专业组

由院校根据人才培养需要和不同专业(含专业或大类)的科目要求设置,是本科志愿填报的基本单位。

模式特点:一所院校可设置一个或多个院校专业组,每个院校专业组内可包含数量不等的专业,同一院校专业组内各专业的科目要求需相同。同一院校科目要求相同的专业可分设在不同的院校专业组中,但这些院校专业组的科目要求须相同。

填报须知:该模式以一个院校加一个专业组为一个志愿单位,将每一个志愿细化到专业组。考生根据自己的意愿,可选择某个学校的某个专业组作为志愿,专业调剂限于同一专业组内调剂。

平行志愿

指考生在填报高考志愿时,可在指定的批次同时填报若干个平行院校志愿。

模式特点:按考生成绩从高到低进行排序,分数高的学生先投档。某一个考生投档时,先看其成绩是否够A院校提档线;如不够,再看B院校;如此类推,直到检索到考生分数符合的志愿院校后,将其投档至该院校。

填报须知:检索考生填报的院校志愿时,是按逻辑顺序即A、B、C、D......院校依次进行的。当考生总分符合首先被检索的A院校投档条件时,且A校有计划余额,该生即被投到A院校。填报时,应在各志愿院校之间拉开适当梯度。

顺序志愿

在同一个录取批次设置的多个院校志愿有先后顺序,每个志愿只包括一所院校。

模式特点:把考生的高考志愿作为录取投档的第一要素,最大程度满足考生的志愿要求。投档时对选报同一志愿院校的考生按院校确定的录取原则、调档比例从高分到低分进行投档。

填报须知:选报同一志愿院校的考生,按院校确定的调档比例从高分到低分进行投档,第一志愿录取结束后再进行第二志愿投档录取。例如考生将A校放在第二志愿,如果A校一志愿已经招满且不预留招收二志愿的名额,那么无论该生分数多高,档案都不会投向A校。

高考如何填写志愿

高考志愿(不含艺术、体育类专业)安排在通知考生成绩之后填报,其中本科提前批志愿填报截止时间为6月24日17∶00,其余本科志愿(含自主招生志愿)填报截止时间为6月28日12∶00,专科志愿在7月2日12∶00前完成填报。对口招生的职教师资和高职班志愿均在6月28日12∶00前完成填报。

主要填的都是号码,我们4102河北是分批次填1653报的内:

提前批,本科一批容a,本科一批b,本科二批a......

每个批次又有第一志愿,第二志愿的院校代码

院校下面又有六个专业代码

还有服从调剂选项。

由院校专业没有系。关键是选择院校和专业。只要认真,填报看似神秘其实很少有因填报而失误的,那都得复查2遍呢。

高中数学学习方法3

学习程度不同的学生需要 ……此处隐藏25200个字……系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。

系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。

在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。

生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。

概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。

60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。

继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。

上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。

总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。

数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。

当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。

20xx年高考数学命题预测之立体几何

【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

20xx年高考中立体几何命题有如下特点:

1.线面位置关系突出平行和垂直,将侧重于垂直关系。

2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。

3.多面体及简单多面体的概念、性质多在选择题,填空题出现。

4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。

此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题

高中数学学习方法15

掌握每一个公式定理

做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。

做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。

进行专题训练提高数学成绩

1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的'分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。

2.错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。

不乱买辅导书

很多高中生认为想要学好数学,就要多做题。所以就买了很多辅导书来做,但是对于数学成绩提高的效果却不是很明显。其实,学好数学和辅导书并没有直接的关联。有做辅导书的时间,高中生不妨好好整理一下自己的数学卷子,把卷子上的难题研究透了,比什么辅导书都有用。

整理错题

很多高中生都没有整理错题的习惯,其实用好错题本是很重要的。高中生可以把自己做错的题和不明白的题,都整理在错题本上,不懂的问题可以请教老师和同学,之后把正确的答案和思路都记录好。

记笔记

高中生不要以为只有文科才需要记笔记,数学同样可以记笔记,笔记中可以记录一些老师总结的方法和技巧,也可以记录一些公式的记忆方法和概念之类的。这本笔记和错题本就是高中生考试之前的重要复习资料了,没事儿的时候也可以翻出来看看。

《高中数学学习方法精选15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式