小学数学教案范文汇编6篇
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?以下是小编收集整理的小学数学教案6篇,欢迎大家分享。
小学数学教案 篇1教学目标:
1、结合具体情境,经历自主解决问题、学习小括号里含有两级运算和带中括号的三步混合运算顺序的过程。
2、理解小括号里含有两级运算和带中括号的三步混合运算的运算顺序,会正确进行计算。
3、经历对计算结果进行检验的过程,能说明所得结果的合理性和正确性,提高解决实际问题的能力。
教学过程:
一、解决问题,服装问题。
1、师生谈话,直接说明本节课要解决的服装加工问题。
(教师谈话引出服装厂加工服装的问题,使学生体会数学来源于生活,激发参与学习的兴趣。)
教师谈话引出服装厂加工服装的问题,使学生体会数学来源于生活,激发参与学习的兴趣。
2、请学生读题和观察情境图,了解文字及图中的数学信息,提出要解决的问题,鼓励学生试做。
(让学生全面了解题中所蕴涵数学信息和要解决的问题,经历用自己的经验解决问题的过程,培养自主学习的能力。)
3、交流计算思路和方法,要鼓励学生大胆展示自己的解题思路和方法,让学生说一说是怎样想的。
(展示、分享解题的思路,获得自主解决问题的'快乐,培养学生语言表达能力。)
(1)、提出“把分步计算的算式改写成一个算式”的要求,鼓励学生自主改写。
(自主改写综合算式,是学生理解带小括号的三步混合运算顺序的自主建构过程自主改写综合算式,是学生理解带小括号的三步混合运算顺序的自主建构过程。)
(2)、交流学生改写的算式。先让学生汇报改写的算式,再说算式的运算顺序和每一步求的是什么。
(3)、讨论:为什么要给660-75×3加上小括号?给学生充分发表不同说法的机会,然后,自己完成脱式计算。
(在交流个性化的算式和先算什么、每一步求的是什么的过程中,使学生认识小括号的作用。发现自己的错误,并改正。)
二皮球装箱问题解决
1、给学生一定的自主检验的时间和充分交流不同检验方法的机会。
(在讨论“为什么加小括号”的过程中,使学生理解小括号里含有两级运算在实际应用中的合理性,发展数学思维和语言表达能力。)
2、教师说明:把分步计算的算式写成一个算式,只有小括号不行要用中括号,并边读边写出混合算式。
(在讨论“为什么加小括号”的过程中,使学生理解小括号里含有两
级运算在实际应用中的合理性,发展数学思维和语言表达能力。)
3、让学生读题,说一说了解到哪些信息,要解决什么问题,鼓励学生自主解答。
(学生理解带小括号的三步混合运算顺序自主建构过程。)
巩固练习
1、根据分步计算的过程,师生共同完成脱式计算。
2、反馈练习、师生总结带有中括号的三步混合运算的运算顺序。
(根据解决问题的过程,使学生掌握带小括号和中括号的运算顺序,经历新知识的形成过程。
在已有知识背景下,归纳带中括号的三步混合运算顺序,有利于学生主动建构数学知识,学会正确计算带中括号的三步混合运算。
昨夜:书中练一练.)
教学反思:
小学数学教案 篇2教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-85.6+0.9-+0-82
2、如果+20%表示增加20%,那么-6%表示。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?
(7)练习:做一做的'第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。2、练习一第6题。
3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0或(0g)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。(2)负数比0小,正数比0大,负数比正数小。
小学数学教案 篇3教学目标:
1.使学生学会1~4 的乘法口诀,理解口诀的来源,明确每句口诀的意义。
2.使学生熟记乘法口诀,并能利用乘法口诀正确地、比较迅速地计算。
3. 培养学生初步的观察、总结能力。
教学重点和难点:理解口诀的来源,掌握推导口诀的方法。
教具/学具 ……此处隐藏2902个字……养学生实践能力的同时培养学生归纳推理的思维能力。
“量一量找规律”活动由以下四部分组成。
1.自制实验工具。
学生在充分理解方程意义的基础上,利用皮筋、木棒、盘子和细绳等材料小组合作制作一个简易秤。具体的做法是用细绳将盘子拴住做成一个托盘,然后用皮筋分别将托盘和木棒拴住。
2.收集实验数据。
学生利用自制的简易秤,依次称量1本、2本、3本等不同数量的课本,在统计表中记录称量的课本数和相应的皮筋总长度,并计算出每增加一本书皮筋伸长的长度。
3.分析数据。
引导学生观察统计表中的信息,并根据表中的数据绘制折线统计图,启发学生讨论从统计图表中能够获得哪些信息。
4.根据统计结果归纳推理。
根据统计图表的结果小组合作探究皮筋长度和课本数二者之间存在的规律及此规律适用的范围。
整个活动不仅使学生经历从收集实验数据、数据、制成统计图表到根据统计结果推理事物之间内在本质关系的全过程,而且促使学生进一步体验运用所学知识探究未知事物的乐趣。
教学建议
1. 这部分内容可用1课时进行教学。
2. 这个活动是一个操作性很强的活动,教学时可采用小组合作的形式放手让学生尝试,充分调动学生自主探索的积极性,教师只在关键处予以一定的引导和点拨。
3.在制作实验工具部分,教师可提前布置学生准备制作材料,并引导学生思考:对制作简易秤使用的橡皮筋和木棒有什么具体要求,启发学生选择弹性较好的橡皮筋,至少在称量6本数学书时不会超出弹性限度或发生永久变形;选择的木棒要尽量做到长度适中、粗细均匀,在称量时不会弯曲、变形。此外,拴盘子时要注意拴的角度和拴绳的长度,使托盘在称量时保持水平、稳定。当然,教师也可根据情况灵活安排,如可用弹簧来代替橡皮筋,在制作时用铁钩等代替木棒达到称量的目的。
4.在收集实验数据部分,教师可在实验之前要求学生先明确书本第77页中统计表中要求采集的信息,并引导学生讨论测量过程中应该注意的事项。例如,要明确测量的起点和终点;测量皮筋长度时要等橡皮筋和秤盘均处于稳定状态时再测;称量时要设法使木棒保持水平……这样得到的数据误差较小。具体实验的实施可采取小组分工合作的形式。
5.在分析数据部分,教师根据统计表绘制出折线统计图,引导学生仔细观察统计图表,想一想统计图表呈现的特点,并讨论它们传达出的.信息。然后,对应统计图表,请小组同学互相说一说:“如果要称量7本书,皮筋会伸长多少?8本呢?10本呢?”
6.在根据统计结果归纳推理部分,老师引导学生思考皮筋长度和课本数二者之间存在的规律,向学生初步渗透函数的。如果有的小组实验数据与理论上y=a+bx(a代表皮筋原长,b代表每增加一本书皮筋伸张的长度)的关系存在一定误差,老师可引导学生分析原因,也可向学生客观说明。
7.在学生出二者之间存在的规律后,老师还可进一步启发学生思考“如果要称量的课本越来越多的话,皮筋会发生什么变化”,帮助学生理解上述二者的关系均是建立在皮筋的弹性限度之内的,反之,二者的关系不存在。
小学数学教案 篇6(一)、实践操作
1、组织谈话
师:上节课我们已经认识了平行四边形,同学们都学了哪些知识,谁还记得。
生:两组对边分别平行的四边形叫平行四边形。
生:认识了平行四边形的高。
2、媒体演示
(出示课件:小山羊的困惑。配音:一只莽撞的小山羊把一个长方形撞倒了,变成了一个平行四边形,于是小山羊就发现了一个问题,是什么问题呢?)
师:现在你能发现什么问题呢?
生:为什么会变成平行四边形呢?面积是否变了呢?
师:小山羊到底发现了什么问题?你们想不想知道呢?
(出示问题:现在的平行四边形和以前的长方形谁的面积大呢?)
生:一样大。
生:我认为长方形面积大,平行四边形面积小。
师:现在有两种意见,大部分同学认为面积一样大,个别同学认为长方形面积大。到底谁说得对呢?你们能不能想个办法比出这两个图形面积的大小?
师:有什么方法验证一下它们的面积是否一样大呢?
生:可以算一算它们的面积的大小。
师:怎样算呢?
生: 长方形的面积 =长×宽(板书)
平行四边形的面积 =底×高
师:你是怎样知道的.?
生:我是看书知道的。
生:我是家长告诉的。
师:那么,为什么平行四边形的面积=底×高,公式是怎么来的呢?这节课,我们就重点来研究平行四边形面积公式的推导过程?
师:下面就用你自己手中的学具,试着把平行四边形转化成我们已经学过的图形。
(小组合作,4人一组,然后在全班汇报)
(二)交流汇报
师:你转化后的图形是什么?你是怎么转化的呢?谁能大胆的上来说一说。
生:是长方形,我是沿着高剪的。
师:你为什么这样剪,不沿着高剪开行不行?
生:长方形的四个角都是直角,所以只有沿着高剪开才能转化成长方形。
师:这个长方形和原来的平形四边形个部分之间有什么关系呢?同学们仔细观察(媒体演示转化的过程:找出底,画高,剪开,平移,拼补,转化成了长方形)。
师::长方形和原来的平行四边形有什么关系?
生:转化后的图形是长方形,我发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积是底乘高。
师:谁再来完整的说一遍。
师:我们通过转化推导出来的面积计算公式和书本上的一样。同学们真是了不起,会自己发现数学知识了。
师:平行四边形的面积计算公式还可以用字母表示呢?你知道怎样表示吗?(学生说,教师板书)
生:公式是s=ah
师:通过刚才的学生,我们知道了平行四边形面积计算的公式,下面一起来解决一些具体的实际问题。
(三)巩固发展
1.口算下列各题。
生:第一个平行四边形的面积是12平方厘米。
生:第二个平行四边形的面积是20平方分米。
生:第三个平行四边形的面积是8平方米。
2.辨析性练习:
师:你能根据图中给出的数据求平行四边形的面积吗?(课件出示下图,单位:厘米)
生:是54平方厘米。
生:我不同意,因为……
师:为什么说面积不是54平方厘米?
生:我也认为不是9×6=54(平方厘米),因为6厘米这条高不是9厘米这条底上。如果沿6厘米这条高剪开拼成长方形,长方形的长就是6厘米这条高,长方形的宽却不是9厘米这条底。所以不能用9×6=54。
师:谁再来说说。
师:让我们来看看。下面你能计算了吗?(课件出示)
生:2×9=18;3×6=18
文档为doc格式