
数学初中学习方法指导
无论在学习、工作或是生活中,大家都在努力,勤奋的学习,掌握一定的学习方法,学习效率就会提高很多。那么,应该怎样学习呢?以下是小编为大家收集的数学初中学习方法指导,仅供参考,希望能够帮助到大家。
数学初中学习方法指导1数学是一门基础学科,对于广大中学生来说,数学水平的高低,直接影响到物理、化学等学科的学习成绩,数学的重要地位由此可见。
怎样才可以学好数学呢?下面教育和你一起来探索初中数学学习方法大揭密。
第一点,深刻理解概念。概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能
更好地运用它来解决问题。
深刻理解概念,还需要多做一些练习,什么是“多做多练习”,怎样“多做练习”呢?
第二点,多看一些例题。细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:
1。不能只看皮毛,不看内涵。
我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。
2。要把想和看结合起来。
我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。
3。各难度层次的例题都照顾到。
看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。
这样可以丰富知识,拓宽思路,这对提高综合运用知识的能力很有帮助。
学好数学,看例题是很重要的一个环节,切不可忽视。
第三点,多做练习。要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。
1。必须熟悉各种基本题型并掌握其解法。
课本上的每一道练习题,都是针对一个知识点出的,是最基本的`题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。
2。在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。
数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。
3。多做综合题。
综合题,由于用到的知识点较多,颇受命题人青睐。
做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。
最后一点,我要说一说如何对待考试的问题。学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。
首先,功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。
其次,应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比
较容易,对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的,另外,对于试题必须考虑周全,特别是填空题,有的要注明取值范围,有的答案不只一个,一定要细心,不要漏掉。
最后,考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。
数学初中学习方法指导2学习方法是完成学习任务的手段,具体说来,是理解知识的本质及其发展规律和解决学习实践问题的手段。实施学法指导的指导思想,就是让学生以科学方法高效地认识、理解、掌握和运用知识,从而让学生学会学习,学会创造,促进身心素质的全面发展。
通过学习《初中生数学学习方法的指导》给我印象非常深刻,课上数学学习方法的指导,概况全面、简洁,分析透彻,对我的教学有很大帮助。,在系统讲授教材的时候,不仅使学生学到知识,还注意指导学生的学习方法,培养学生的学习能力。最大限度地发挥学生学习的主动性,高效率地培养和发展学生 ……此处隐藏6176个字……彼,由例及类,触类旁通,从而获得规律性的认识。另一方面,突出某些概念和规律的个性,掌握概念和规律的实质,把握概念的内涵和外延,消除头脑中存在的错误或模糊认识。例如,学习《一元一次不等式》一部分内容时,可同《一元一次方程》一部分内容就概念、性质、解题步骤、解(解集)的情况及解(解集)的表示等方面进行类比。
学习公式可从取值、运算顺序,运算结果及公式表示的意义等方面进行类比,教材中按章节(或单元)划分,可类比学习的地方有二十多处,在此不再一一赘述。
学习过程是个体主动认识和发展的过程,利用类比的方法,可使我们已有的经验和知识进行迁移,运用已有的知识和已掌握的方法探索处理新问题的途径,有利于形成自觉探索、自主解决问题的良好学习习惯,这些习惯和方法的形成,对于我们未来的发展也是终生获益的。
例如,可类比一元一次方程的解法,探索一元一次不等式的解法;类比整式的加减乘除运算,探索二次根式的加减乘除运算;类比分数的基本性质及应用,探索分式的基本性质及应用。此外,还可以通过类比的方法对数学教材中的题型归类,既可以把习题由多变少,从而减轻学习负担,又能锻炼和提高自己的思维能力,可谓一举两得。
四、学会转化
数学思想是人们对数学知识和数学方法的理性认识,是对数学知识,数学方法的高度抽象和概括。其中转化思想就是将一种研究对象在一定条件下转化为另一种研究对象的数学思想方法。通常有“未知”向“已知”的转化,“复杂”向“简单”的转化,“实际问题”向“数学模型”的转化,“一般”向“特殊”的转化等。转化思想几乎贯穿整个初中数学学习的全过程,是数学中的常规思想和基本方法,在数学学习过程中,根据已有的知识和经验,通过观察、联想、变换等手段,把要解决的问题转化为已经解决或容易解决的问题,逐步形成自觉的转化意识,对解决问题能力的提高和良好思维品质的培养具有重要的作用。
(一)化“未知”为“已知”。数学这门学科具有系统性、层次性强的特点,绝大多数新知都是由它的先行旧知延伸和发展而来的,把新知识、新问题化归为旧知识、旧问题来解决,不但找到了解决问题的途径而且巩固发展了旧知识,能顺利实现“新知”向“旧知”的转化,“未知”向“已知”的转化。初中数学方程和方程组的解法,就是通过消元、降次实现“未知”向“已知”转化的。
(二)化复杂为简单。对于复杂抽象的数学问题,应用传统的思维方式问题容易受阻,或者解决起来十分麻烦,这就需要及时调整思维的方向,冲出常规思维的框框。灵活选取角度寻找解决问题的途径,把问题转化为新的可以解决的问题,达到化复杂为简单的目的。
例如:m为何值时,方程x+(m-5)x+1-m=0的一个根大于3,另一个根小于3。
若设x-3=t,则x=t+3,把x=t+3代入原方程得
t+(m+1)t+(2m-5)=0,这样把“一根大于3,另一根小于3”的情况就转化为“一根大于0,另一根小于0”的情况,由t1t2<0即2m-5<0,解得m<5/2
例如:从12点起,在什么时间,时钟的分针和时针第一次重叠。
这个问题从表盘的分格上或两针的夹角上考虑,是比较复杂的,如果把两针看士两个人,那么问题就转化为在环形跑道上的追及问题。
(三)化实际问题为数学模型。利用化归方法构造数学模型,解决学习、生产、生活中的实际问题,是学生必须具备的数学素养,也是培养学生创造性思维能力的重要途径。例如,在《正多边形和圆》一部分内容中有这样一个实际问题:“用美术瓷砖铺地面,’,解决这个问题,应舍弃材料的图案和质量,从数学的角度来考虑,就是选择什么形状的瓷砖铺地面。可以借助实际图形,结合已学过的正多边形的有关知识寻求合理答案,经过观察、对比可以发现,应选取正三角形、正四边形、正六边形的瓷砖铺地面。化归这个数学问题的实质是选取围绕角的顶点能拼成360°角的正多边形。再如2000年中考23题。解答此题,就需要根据实际问题提供的数据,建立数学模型,转化成数学问题中的数量关系,根据抛物线的有关数学知识进行求解。
端外,转化的方式还有化抽象为具体,化形为数,化数为形,化一般为特殊等,不再赘述。
五、学会分析
在《大纲》和教育部《中考命题意见》中都强调在培养和考查学生“三大能力”的同时,着重培养和考查学生运用数学知识分析和解决实际问题的能力。在数学学习过程中,每一名学生都想知道,碰到一道稍复杂的题目,应如何着手思考,如何在较短的时间内找到正确的解题途径,并按照一定的逻辑关系将解题(证明)过程写出来。实践证明,学生们分析问题、解决问题的能力,在很大程度上依赖于是否学会分析。
分析就是把研究对象分解为它的各个组成部分、方面、因素、层次,然后分别加以研究,从而认识事物的基础或本质的一种思维方法。具体地说,分析法就是从数学题的结论出发,利用学过的公式、公理、定理或法则去推想使结论成立的条件,一旦这些条件具备,结论就成立。譬如要证明命题甲成立,就去寻找使命题甲成立的条件,若命题甲成立的条件可由已知条件直接推得,那么问题就解决了。如果所需的条件有一个或几个不在已知中,问题没有解决,可继续往下想,看已知中缺少的条件是否可直接由已知中具备的条件推出,如果可以,那么问题得以解决,如果还是不行,那就继续用同样的方法追溯,直到你所需要的某个条件已能由已知条件推得为止。简言之,分析法就是“执果索因”。
数学初中学习方法指导8(1)多思、勤思,随听随思;
(2)深思,即追根溯源地思考,善于大胆提出问题;
(3)善思,由听和观察去联想、猜想、归纳;
(4)树立批判意识,学会反思。可以说“听”是“思”的基储关键,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。
有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:
(1)记笔记服从听讲,要掌握记录时机;
(2)记要点、记疑问、记解题思路和方法;
(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。课堂学习指导是学法中最重要的。同时还要结合不同的授课内容进行相应的学法指导。
3深后复习巩固及完成作业方法的.指导
初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。为此在这个环节的学法指导上要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等)。然后独立完成作业,解题后再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。初一学生做到这点很困难。
文档为doc格式