高中数学片段教学设计

时间:2025-08-10 16:14:26
高中数学片段教学设计

高中数学片段教学设计

在教学工作者实际的教学活动中,可能需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。优秀的教学设计都具备一些什么特点呢?下面是小编收集整理的高中数学片段教学设计,希望对大家有所帮助。

高中数学片段教学设计1

一、目标确定:忌泛化,倡明确

〔描述〕某教师将“探索三角形内角和等于多少度”片段教学目标拟定为:认知目标――引导学生经历探索和发现三角形内角和等于180°的过程;能力目标――发展动手操作、观察比较、抽象概括的能力和初步的空间想象力;情感目标――在实践活动中体验探索的乐趣,体验转化迁移的思想方法。该教师就上述片段教学目标的拟定背景作了阐述:“数学课程标准强调,数学教学要重视三维目标的统一,片段教学作为常态课堂教学的缩影,同样也要注意教学目标的多元化……”

〔分析〕片段教学受特定教学内容、教学时间的制约,其目标应比课时目标更加精简、具体。然而上述片段教学目标看似全面,但指向不明。究其原因,是教师在常态教学中受“数学教学应倡导知识与技能、过程与方法、情感态度与价值观等三维目标统一”的禁锢,习惯教学目标面面俱到,导致教学目标形式化,缺乏可操作性、可检测性。事实上,教学目标是教学活动的指南,不必面面俱到。教学目标只有具体、鲜明、精练、可及,才能成为教学活动的引路标。就上述片段教学而言,针对特定的片段教学内容,可将教学目标拟定为:“通过测量、剪拼、折叠等方法,引导学生经历探索和发现三角形内角和等于180°的过程,培养学生的探究意识。”这样,教学目标变得简约、具体、明确,教学活动才具有方向性、针对性。

二、内容选择:忌臃肿,倡精练

〔描述〕某教师就上述片段教学设计了以下四个活动:1?郾让学生猜一猜三角形的内角和是多少度,引出课题。2?郾让学生画出几个三角形,量一量、算一算这些三角形的内角度数和,得出“大小、形状不同的三角形的内角和为180°”的猜想。3?郾让学生将三角形三个内角剪下来,拼成一个平角,得到三角形内角和是180°。4?郾让学生把同一个三角形的三个内角折叠在一起,组成一个平角,得到三角形的内角和是180°。受到片段教学时间15分钟的限制,教师“教色”匆匆,虽然教得飞快,但最终还是没有完成预设内容,使本片段教学因残缺而遗憾。

〔分析〕该教师的片段教学之所以“上不完”,从表面上看,是时间太短,但其深层次的原因是,教师在常态教学中习惯了追求教学资源“多”、“全”、“新”,而不是追求资源内容精当和综合运用。数学教学讲究时效性,教学内容不在多,而在于精,尤其注重教学内容能否引发学生对数学本质的积极思考。上述教学,前两个活动可以整合,后两个活动有重复之嫌。据此,教师可对教学内容进行优化,使教学活动变得精练:1?郾组织学生通过测量、计算三角形的内角和引发猜想。2?郾启发学生不用量,自己探究用剪或折的方法验证猜想。这样精选教学内容,就能让学生的探究活动充分而深刻,让数学课堂更富有实效。

三、教学调控:忌盲从,倡预设

〔描述〕学生动手测量、计算三角形的内角和,答案各不相同:有的说179°,有的说180°,还有的说181°……大家争相辩解,相持不下。教师见状,忙加引导:“认为内角和是179°的同学是怎样量的?”教师让测量结果不是180°的学生一一上台在实物投影仪上展示测量过程,再由其他学生评价、纠正。结果在测量计算这一环节花了近10分钟,而动手拼角、折角等活动只能蜻蜓点水,匆匆而过。教学活动“头重脚轻”,重心失衡。

〔分析〕三角形的内角和为180°这一结论并非完全靠测量、计算得出,因为受测量工具、测量方法的'制约,学生动手测量不一定能得到一个精确的结果,只要获得一定的体验、知道三个内角之和接近或等于180°就行了。从这个意义上说,教师盲目随着学生的思路对三角形内角和的“近似值”进行细致测量计算是没有意义的。上述片段教学中教师被学生的思路引着走,折射出教师没有对教材进行深入研究,对学生学习活动中可能出现的动态生成缺少精心预设。数学教学要重视课堂现场生成,更要强调课前精心预设,从教学目标达成的高度对课堂生成信息提出取或舍的对策;既要尊重学生解决问题的思路,给他们个性化的思考提供空间,也要正确引导他们将精力和思维集中在学习的核心处、知识的本质处。当学生测量、计算出三角形内角和大约为180°后,教师不必纠缠于此,而应通过“刚才大家通过测量、计算,猜测出三角形的内角和在180°左右,到底是多少呢?接下来我们动手验证”的过渡语,引导学生转入剪、拼、折等验证环节,直指教学目标,确保教学任务的完成。

四、方法选择:忌花哨,倡实在

〔描述〕在让学生动手折、剪、拼角的活动中,教师是这样组织的:同桌两人一组,每组发一张三角形纸片,同桌合作,将三角形的三个角组合在一起,看看它们的内角和是多少度。学生合作的效果并不尽如人意:有的组一人做,一人看;有的同桌两人重复操作,浪费时间;还有的为谁先谁后操作而争论不休……课后,教师在反思中提到,这里之所以要设计同桌两人共同操作的活动,意在体现新课改倡导的合作学习方式。

〔分析〕把一个三角形的三个角先剪下来,再拼在一起,对四年级的学生而言,没有多大难度;将一个三角形的三个角折在一起,变成一个平角,仅凭同桌两人合作则很难完成,需要教师点拨。可见,这里的合作探究没有多少合作的必要。教师为了体现合作学习,组织同桌学生合作操作纸片,是追求时髦、故弄花哨的表面形式,简单地把动手操作、合作学习、探究学习当成“新课堂”的展现点,而没有从学生“学”的角度对各种学法的实效进行评估,更没有选择有针对性的学习活动形式。因此,教师要从提高实效出发,对各种学习方法进行比较,并作出选择。如,通过剪、拼活动,验证三角形的内角和这一操作活动,可让学生独立完成,获取丰富而深刻的数学体验;通过折角验证内角和的活动,可由教师演示,学生观察、描述操作过程,并分析结果。这样的课堂教学尽管没了花哨的形式,却因能让学生积极参与而更富有实效。

高中数学片段教学设计2

1.站在授课者视角对课例“正态分布”品课

教学片段一引导学生观察小球从高尔顿板上方下落过程

师:投放小球前,知道小球落在哪个槽中?生:不知道

师:给槽编号,落槽中小球堆积高度反映什么?生:落槽内球频数.

师:如何用所学知识研究落在各小槽内小球分布情况?生:无回应

师:是否记得在必修3中,如何研究居民人均用水问题的吗?

生:哦,用频率分布直方图.师:你们真棒!

教学片段二多媒体演示必修3居民用水问题频率分布直方图

师:如何用样本频率分布直方图估计总体分布密度曲线?

生:用频率分布折线图.

……此处隐藏3451个字……一下子对口算有了积极的情感,也感受到了成功的喜悦。

以上两个片段是我教学预设时两次不同的思考,实际教学时采用了片段二的预设。

二、主动建构算法,感悟内在统一的美

【片段三】

4.那600÷3,你会算吗?6000÷3呢?

【片段四】

两幅图都是平均分成三份了吗?(平均分的特点就是每份同样多。)

将60个方格平均分成3份,每份是多少?如何列式计算?(60÷3 = 20)

能否结合这幅图来说说,为什么每份是20?

5. 小结:6个十除以3得2个十,是20。

片段三中,承接着学生自己口算出整十数除以一位数的口算的高兴劲儿,引导学生重点讨论60÷3的口算方法。学生小组讨论后,鼓励学生表达不同的思考过程。有算除法想乘法,利用除法是乘法的逆运算来思考的;有想象借助实物来分一分的,老师相机演示小棒分的过程,引导学生用数学语言把分的过程表达出来;有凭着直觉来口算的,6除以3得2,那么60除以3得20。在学生充分交流之后,老师适时追问,引发学生深入思考,明确这里的6除以3得2,表示6捆小棒(每捆10根)平均分成3份,每份是2捆小棒,也就是20根。让学生在思考、交流中,顿悟方法二与方法三在本质是一样的。

片段四中,老师以学生已有的表内除法和平均分为基础,引导学生将想法在方格图上用自己喜欢的方式表示出来。通过比较、交流,让学生进一步理解平均分,丰富对除法意义的理解;同时引导学生根据图意说一说,很自然地引出了算式以及算法,最后得出“6个十除以3得2个十,是20”可谓水到渠成。

这两个片段,是在引导学生理解算法时,我和孟老师同课异构中两个不同的教学预设。虽然算理和算法的侧重点不同,呈现的载体和方式也不同,但是在理解算法上都体现了学生主动建构的过程,让学生自主探究得出算法;同时在算法多样化的'基础上,引导学生自主地进行方法的优化。

三、对比突破难点,体会数形结合的美

【片段五】

明确:把200看作2个百,2个百除以5,每份是不能分得1个百的,所以这里的200要看作20个十。

整百数除以一位数(首位不能整除的)是这节课的教学难点。为了突破这个难点,设计了被除数是相同的整百数、除数是不同的一位数的口算。让学生在对比练习中,感受到不同:要把被除数看作出几个百或几个十,这是学生的第一次感悟,可能一小部分学生已经心领神会了,但大多数同学还是一知半解。第二次感悟,通过追问的方式,让学生试着去解释“为什么200除以5时,不能把200看作2个百,而要看作20个十呢”,在学生用语言表达的同时,借助多媒体课件,动态地展示“2个百除以5,每份是不能分得1个百的”,因此要把“200看作20个十,除以5得4个十,就是40”。

这样,借助“形”的直观,去体会“数”的抽象,使学生的认知从模糊走向清晰,抽象的算法,有了直观的算理依托,学生易于理解和掌握。数形结合,有效地突破了教学的难点。

四、练习注重有效,感悟应用延伸的美

【片段六】

【片段七】

片段六中,老师设置了一个具体的问题情境,引导学生自主去跟所学的平均分、口算等知识产生“链接”,提出解决问题的方法。这样,让计算教学与生活实际紧密联系,通过解决实际问题,让学生感悟计算的重要性和应用价值。

片段七中,老师通过开放题的设计,学生猜的过程,旨在帮助学生自主地去巩固整百数、整十数除以一位数的口算;根据被除数的百位和除数的大小,判断商是几位数,是口算除法与笔算除法首位试商的沟通和延伸。这一题的开放设计与充分挖掘,使一道题充分发挥它的作用,这一过程中在提高学生计算能力的同时,很好地发展了学生的数感。

高中数学片段教学设计4

片段一:

师:“3×4”读作什么?生1:“3×4”读作“3乘4”。生2:“3×4”读作“3乘4”。全体学生:“3×4”读作“3乘4”。课堂巩固练习:“3x4读作――”,巡视发现学生写的答案是各种各样:有“三乘四”,“三×四”,“3×4”。等等。

片段:

师:“3×4”读作什么?生1:“3×4”读作“3乘4”。生2:“3×4”读作“3乘4”。

师:立刻在“3×4”算式的旁边示范性板书:“读作:3乘4”。

全体学生边看老师的板书边读:“3×4”读作“3乘4”。

课堂巩固练习:“3×4读作――”,巡视发现学生的答案,几乎全是“3乘4”。

这两组教学片段的教学设计几乎相同,两个班级学生的学习情况与教师教学水平也没有明显差异,主要差异只有一处――片段二中教师板书:“3×4”读作“3乘4”。并且片段二中教师适当地对学生回答问题的方式加以了引导:“那你们谁能用数学语言的方式把这道文字题用算式来体现呢?”并在学生表述时适当地配合了板书。由巩固练习可以看出。这两点差异产生的教学效果却大相径庭,两个片段的教学有效性为何相差如此之大?有必要对此进行检视与反思。

下面试从课堂教学有效性的“三效”角度对两组教学片段进行比较分析,以探析提高数学课堂教学有效性的方法策略。

一、片段二比片段一的教学效果大。教学有效果是指教学活动结果中与预期教学目标相一致的部分,它着重考察的对象是学生,是对教学活动结果与预期教学目标吻合程度的评价。

片段一中的知识目标是在理解“3×4”的意义下会读写“3×4”,在数学符号语言“3×4”与自然语言“3乘4”之间建立对应关系,属于陈述性知识的学习。在片段一中教师仅让学生口头说“‘3×4’读作‘3乘4’”并进行重复,由于语音“eheng”有多种表示形式,教师没有给学生明确示范用“3乘4”表示,学生根据语音,写出“三乘四”,“三×四”或“3×4”等是有其合理性的,这属于教学引起的合理性错误,在教学设计中教师要注意避免歧义的产生,避免由于教学设计的不当导致教学效果的缩减。片段=中教师通过板书给出清晰的表示形式,学生不会再出错,使教学的效果大大增加。

二、片段二比片段一的`教学效率高。教学效率是指单位教学投入所获得的教学产出。由于教学活动本身也可以看作是一种精神性的生产活动,可借用经济学的概念将教学效率表述为:教学效率=教学产出/教学投人。

片段一仅仅是学生听、读,说。片段二在学生听、读、说的同时教师随即板书。因此,从以上两个教学片段本身分析可知。二者在教学投入上几乎没有什么差别,而从学生对知识掌握的情况来看,片段二的教学产出要比片段一的多。所以由公式:教学效率=教学产出/教学投入可知,片段二的教学效率比片段一的高。

片段二中教师明确地在黑板上给出了板书示范,让学生在听的同时可以通过看板书来使获得的信息更加深刻。板书的示范增加了学生通过视觉获得信息的通道,而这一通道相对来说具有更高的效率。

三、片段二比片段一的教学效益好。教学效益指的是教学活动的收益、教学活动价值的实现,具体而言是指教学目标与特定的社会和个人的教学需求是否吻合以及吻合程度的评价。

《高中数学片段教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式